Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances.
نویسندگان
چکیده
The optical properties of plasmonic nanostructures supporting Fano resonances are investigated with an electromagnetic theory. Contrary to the original work of Fano, this theory includes losses in the materials composing the system. As a result, a more general formula is obtained for the response of the system and general conclusions for the determination of the resonance parameters are drawn. These predictions are verified with surface integral numerical calculations in a broad variety of plasmonic nanostructures including dolmens, oligomers, and gratings. This work presents a robust and consistent analysis of plasmonic Fano resonances and enables the control of their line shape based on Maxwell's equations. The insights into the physical understanding of Fano resonances gained this way will be of great interest for the design of plasmonic systems with specific spectral responses for applications such as sensing and optical metamaterials.
منابع مشابه
Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials
An ab initio theory for Fano resonances in plasmonic nanostructures and metamaterials is developed using the Feshbach formalism. It reveals the role played by the electromagnetic modes and material losses in the system, and enables the engineering of Fano resonances in arbitrary geometries. A general formula for the asymmetric resonance in a nonconservative system is derived. The influence of t...
متن کاملFano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
By using metal-free plasmonics, we report on the excitation of Fano-like resonances in the mid-infrared where the Fano asymmetric parameter, q, varies when the dielectric environment of the plasmonic resonator changes. We use silicon doped InAsSb alloy deposited by molecular beam epitaxy on GaSb substrate to realize the plasmonic resonators exclusively based on semiconductors. We first demonstr...
متن کاملAbsorption Spectroscopy of an Individual Fano Cluster.
Plasmonic clusters can exhibit Fano resonances with unique and tunable asymmetric line shapes, which arise due to the coupling of bright and dark plasmon modes within each multiparticle structure. These structures are capable of generating remarkably large local electromagnetic field enhancements and should give rise to high hot carrier yields relative to other plasmonic nanostructures. While t...
متن کاملObservation of Fano resonances in all-dielectric nanoparticle oligomers.
It is well-known that oligomers made of metallic nanoparticles are able to support sharp Fano resonances originating from the interference of two plasmonic resonant modes with different spectral width. While such plasmonic oligomers suffer from high dissipative losses, a new route for achieving Fano resonances in nanoparticle oligomers has opened up after the recent experimental observations of...
متن کاملPlasmonic Spectral Splitting in Ring/Rod Metasurface
We report spectral splitting behaviors based on Fano resonances in a novel simple planar metasurface composed of gold nanobars and nanorings. Multiple plasmonic modes and sharp Fano effects are achieved in a broadband transmittance spectrum by exploiting the rotational symmetry of the metasurface. The transmission properties are effectively modified and tuned by modulating the structural parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2011